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ABSTRACT: 

In this work, we present a new formulation of a 3D beam element, with a new method to describe the 

transversal deformation of the beam cross section and its warping. With this new method we use an 

enriched kinematics, allowing us to overcome the classical assumptions in beam theory, which states 

that the plane section remains plane after deformation and the cross section is infinitely rigid in its 

own plane. The transversal deformation modes are determined by decomposing the cross section into 

1D elements for thin walled profiles and triangular elements for arbitrary sections, and assembling its 

rigidity matrix from which we extracts the Eigen-pairs. For each transversal deformation mode, we 

determine the corresponding warping modes by using an iterative equilibrium scheme. The 

additional degree of freedom in the enriched kinematics will give rise to new equilibrium equations, 

these have the same form as for a gyroscopic system in an unstable state, these equations will be 

solved exactly, leading to the formulation of a mesh free element. The results obtained from this new 

beam finite element are compared with the ones obtained with a shell model of the beam. 

Keywords: Distortion, warping, higher order beam element, mesh-free element, gyroscopic system. 

1. INTRODUCTION:  

The classical beam theories are all based on some hypothesis that are sufficient in most cases for 

structure analysis, but fail in more complex cases to give accurate results and can lead to non-

negligible errors. For Timoshenko beam theory, widely used by structural engineers, two assumptions 

are made, the cross section remains plane after deformation and every section is infinitely rigid in its 

own plane, this means that the effects of warping shear lag and transversal deformation are neglected, 
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these phenomenon are important in bridge study, especially when dealing with bridge with small 

width/span ratio, and with thin walled cross section. 

The problem of introducing the warping effect into beam theory has been widely treated. The 

most classical approach is to introduce extra generalized coordinates, associated with the warping 

functions calculated from the Saint-Venant solution, which is exact for the uniform warping of a beam, 

but gives poor results in the inverse case, especially near the perturbation where the warping is 

restrained. Bauchau[1], proposes an approach that consists in improving the Saint-Venant solution, 

that considers only the warping modes for a uniform warping, by adding new eigenwarping modes, 

derived from the principle of minimum potential energy. Sapountzakis and Mokos[2,3] calculate a 

secondary shear stress, due to a non-uniform torsion warping, this can be considered as the derivation 

of the second torsion warping mode in the work of Ferradi et al[4], where a more general formulation 

is given, based on a kinematics with multiple warping eigenmodes, obtained by considering an 

iterative equilibrium scheme, where at each iteration,  equilibrating the residual warping normal 

stress will lead to the determination of the next mode, this method has given very accurate results, 

even in the vicinity of a fixed end where the condition of no warping is imposed. 

The aim of this paper is to propose a new formulation, which not only takes into account the 

warping of the cross section, but also its transversal deformation, an element of this type falls in the 

category of GBT(generalized beam theory), which is essentially used to study elastic buckling of thin 

walled beam and cold formed steel members [5], this is done by enriching the beam’s kinematics with 

transversal deformation modes, and then determining the contribution of every modes to the 

vibration of the beam. Free software GBTUL [6] is available to perform this analysis, developed by a 

research group at the Technical University of Lisbon. In the formulation developed by Ferradi et al[7], 

a series of warping functions are determined, associated to the three rigid body motions of horizontal 

and vertical displacements and torsion, which can be considered as the three first transversal 

deformation modes. The idea is to go beyond these three first modes, and determine a series of new 

transversal deformation modes, calculated for an arbitrary cross section, by modeling this section with 

triangular or/and 1D element, assembling its rigidity matrix and extracting the eigenvalues and the 
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corresponding eigenvectors, for a desired number of modes. Then, for each determined mode, we will 

derive a series of warping functions, noting that we will need at least one to represent exactly the case 

of uniform warping in the beam. With all these additional transversal and warping modes, we will 

obtain an enhanced kinematics, capable of describing accurately, arbitrary displacement and stress 

distribution in the beam. Using the principal of virtual work we will derive the new equilibrium 

equations, which appear to have the same form as the dynamical equations of a gyroscopic system in 

an unstable state. Unlike classical finite element formulation, where interpolation functions are used 

for the generalized coordinates, we will perform for this formulation, as in [4], an exact solution for 

the arising differential equations system, leading to the formulation of a completely mesh free 

element. 

The results obtained from the beam element will be compared to those obtained from a shell 

(MITC-4) and a brick (SOLID186 in AnsysTM) model of the beam. Different examples are presented to 

illustrate the efficiency and the accuracy of this formulation. 

2. DETERMINATION OF TRANSVERSAL DEFORMATION MODES: 

For an arbitrary beam cross section, composed of multiple contours and thin walled profiles, to 

calculate the transversal deformation mode, we use a mesh with triangular elements for the 2D 

domain delimited by some contours and beam element for the thin walled profiles. As for a classical 

structure with beam and shell elements, we assemble the rigidity matrix Ks for the section, by 

associating to each triangular and beam element a rigidity matrix (see appendix A1) calculated for a 

given thickness. We calculate the eigenvalues and their associated eigenvectors of the assembled 

rigidity matrix of the section, by solving the standard eigenvalue problem (SEP): 

 ��� = �� (1) a 

We note that for all that will follow, if it’s written in bold, a lowercase letter means a vector and an 

uppercase letter means a matrix. 

The strain energy associated to a transversal mode represented by its Eigen-pair ��, �� will be given by: 

 	 = 12����� = 12 ���� = 12 � (1) b 
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Thus, the modes with the lowest eigenvalues mobilize less energy and then have more chances to 

occur. From the resolution of the SEP, we obtain a set of vectors that we note � = ���� 		, ����, where 

���  and ���  are the vertical and horizontal displacement, respectively, for the ith transversal 

deformation mode. We note that the three first modes with a zero eigenvalue, corresponds to the 

classical modes of a rigid body motion: 

 
� = �1		, 0�				,				� = �0		, 1�				,					� = �−�� − ���	, � − ��� (2)  

Where ���, ��� are the coordinates of the torsion center of the section. 

 

Figure 1: examples of transversal deformation modes for a thin walled profile I-section with 1D elements. 

 

Figure 2: examples of transversal deformation modes for a rectangular section with triangular elements. 

 

In our formulation, the only conditions that needs to be satisfied by the family of transversal 

modes functions, is that they form a free family, not necessarily orthogonal. Thus, an important 

feature of our formulation is that any free family can be used to enrich our kinematics, the resolution 

of the differential equation system, performed later, being completely independent from the choice of 

the transversal and warping modes functions. In our case, the condition of free family is satisfied by 
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construction, from the solution of the SEP by the well-known Arnoldi iteration algorithm, 

implemented in ARPACK routines. 

In [5] the same method is used to determine the transversal mode for a thin walled profile, with 

the difference that they use a 3D Timoshenko beam for their section discretization, thus from the 

resolution of the SEP they derive the transversal modes and also their corresponding warping mode. 

We use here a different approach for the determination of the 1st warping mode for each transversal 

mode, based on the equilibrium of the beam element in the case of uniform warping; the higher order 

warping modes will be derived by using an iterative equilibrium scheme. 

 
3. DETERMINATION OF WARPING FUNCTIONS MODES FOR A GIVEN TRANSVERSAL MODE: 

3.1. THE 1ST WARPING MODE DETERMINATION: 

We consider the kinematics of a beam element free to warp, where we include only one transversal 

deformation mode. We then write the displacement vector d of an arbitrary point P of the section: 

 � = �� ! " # = � � $��$��# (3)  

�  Represents the longitudinal displacement due to the warping induced by the transversal mode and 

 = ���		, ��� the displacement vector of the transversal deformation mode at the point P. 

From the condition of uniform warping in every section (all the beam’s cross section will deform in 

the same manner), we can write: 

 %&& = '� '( = 0 (4)  

This relation expresses the fact that uniform warping doesn’t induce any change in the length of all 

the beam’s fibers. 

From the displacement vector, we deduce the strain field: 

 

%&& = '� '( = 0
2%&� = '� '� + �� *$*(2%&� = '� '� + �� *$*(

											
%�� = '��'� $
%�� = '��'� $

																	2%�� = $ +'��'� + '��'� ,
 (5)  
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And the stress field: 

 

-&& = �	$	*.!			-&� = / +'� '� + �� *$*(,
-&� = / +'� '� + �� *$*(,

											
-�� = +2/ '��'� + �	*.!	, $
-�� = 02/ '��'� + �	*.!	1 $
	-�� = /	 +'��'� + '��'� , $

 (6)  

 

Where � = 23��42���5�2� and / = 3���42�  are the Lamé coefficients, E the elasticity modulus and 6 the 

Poisson coefficient, and *.! is the divergence operator:  *.!	 = 7897� + 78:7�  

We note the stress vector: ; = �-&�		, -&�	�, that will be expressed by : 

 ; = / 0<� + *$*( 1 (7)  

Where < = = 77� 	 , 77�> is the gradient operator. 

We write the equilibrium equation of the beam:  

 
'-&&'( + *.!	; = 0 (8)  

 �	*.!	 *$*( + / 0Δ� + *$*( 	*.!	1 = 0 (9)  

 Δ� = −01 + �/1 *.!		 *$*( (10)  

Where Δ = 7²7�²+ 7²7�²   is the Laplace operator. 

From the last equation, we can see that the displacement �  can be written in the following form 

� = −Ω BCB& , where Ω is the warping function, verifying the relation : 

 ΔΩ = 01 + �/1 *.!	 (11)  

The normal component of the stress vector ; has to be null on the border of the cross section, this 

condition is expressed by: 

 ; ∙ E = 0 (12)  
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 / *$*( �−<Ω + � ∙ E = 0 (13)  

 
'Ω'F =  ∙ E (14)  

Where E is the normal vector to the border of the section and 
7G7H = 	<Ω ∙ E 

We resume here the equations of the partial derivatives problem, leading to the determination of the 

warping function Ω: 

 

ΔΩ = 01 + �/1 *.!												IF		J'Ω'F =  ∙ E																											IF	Γ			
L Ω	*J = 0M

 (15)  

Where S is the cross section area. 

The last relation was added to derive Ω uniquely. This relation corresponds to the condition that 

warping doesn’t induce any uniform displacement.  

The resolution of this problem can be performed by using one of the many numerical methods 

available, such as finite element method (FEM), finite difference method (FDM) or boundary element 

method (BEM), see [4] for more details. 

If we consider the rigid body motion of the beam section, corresponding to the displacements v 

and w in the two directions of the principle axes and the rotation around the normal axis to the section 

N&, we will obtain the flexural modes and the Vlassov torsion warping [6], by solving the problem 

above, this shows the analogy between rigid body motion modes and the other transversal 

deformation modes. 

Details about the derivation of the 1st warping mode, for a thin walled profile section, are given in 

appendix A1. 

 

3.2. DETERMINATION OF HIGHER MODES  WARPING FUNCTIONS: 

In the case of non-uniform warping, the condition of %&& = 0 is no longer verified, thus we can’t state 

that the longitudinal displacement is of the form � = −Ω BCB& , but instead we make the assumption 

that �  can be written in the following form : 
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 � = Ω	O = Ω0P − *$*(1 (16)  

Where O is the new rate function of the corresponding warping mode. 

Thus the new normal stress is: 

 
-&& = �	$	*.!	QRRSRRTUV + 2/	Ω	 *P*(QRSRTUW

 
(17)  

The warping function Ω has been calculated in such a way that the normal stress -� is equilibrated 

and the condition ; ∙ E = 0 verified, thus in the case of a non-uniform warping the total normal stress 

will not be equilibrated due to the presence of the residual normal stress -�. Restoring equilibrium 

leads to the determination of a secondary shear stress associated to a 2nd warping mode. This 

reasoning can be considered as the first step of an iterative equilibrium scheme, converging to the 

exact shape of the warping due to the considered transversal deformation mode. 

We assume that we have determined the nth warping mode, and we wish to determine the 

n+1th warping mode. The nth warping normal stress -H will be then equilibrated by the n+1th 

warping shear stress: 

 
'-H'( + *.!	;H4� = 0 (18)  

Where :   -H = 2/	ΩH 	BXYB&    ,   ;H4� = /PH4�<ΩH4� 

Thus : 

 2/	ΩH 	*²PH*(² + /PH4�	ΔΩH4� = 0 (19)  

The functions ΩH4� and ΩH depends only of the geometry of the cross section, whereas PH4� and 

PH depends of the abscissa x, so it implies that there exists necessarily two constants ZH4� and 

[H4�, related to the equilibrium of the beam, verifying: ΔΩH4� = ZH4�ΩH				,				PH4� = [H4� B²XYB&²  . 

Our goal is to construct a base of warping functions, where any section warping can be 

decomposed linearly with the aid of the generalized coordinates ξ i that can be seen as a participation 

rate for the corresponding warping mode. In practice we need only to determine the warping 

functions to a multiplicative constant, and the participation rate for each mode will be obtained by 

writing the equilibrium of the beam. Thus, at the cross section level, only the problem ΔΩH4� = ΩH has 
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to be solved. For this problem, we need to define the Neumann and Dirichlet conditions to solve the 

problem uniquely. The Neumann condition, which specify the value of the derivative of ΩH4� on the 

border of the section, will have the same form of the 1st warping function ( 
7GV7H =  ∙ E ), in practice we 

can use the condition 
7GY\V7H = 0 to solve the problem, and the uniqueness will be assured by the 

orthogonalization with the lower modes, to this aim the modified Gram-Schmidt orthogonalization 

process can be used. For the Dirichlet condition, we impose ΩH4� = 0 at an arbitrary point to solve the 

problem, and the condition ] ΩH4�*JM = 0 will assure the uniqueness.  

 

4. EQUILIBRIUM EQUATIONS AND THE STIFFNESS MATRIX: 

4.1. KINEMATIC, STRAIN AND STRESS FIELDS : 

In this part we will consider general beam kinematics, with n transversal deformation modes and m 

warping modes, we note that in this section the transversal deformation and warping modes can be 

completely independent and can be chosen arbitrarily on the unique condition that the family of 

warping functions and the family of transversal functions should be free. We write the enriched 

kinematics: 

 � = �� ! " # =
_̂__̀
___
a� +bΩcPcd

ce�
b��� $�H
�e�
b���$�H
�e� f__

_g
___
h
	 (20)  

We note that the first transversal deformation modes will correspond to the rigid body motion, and 

the first warping modes will correspond to the beam flexion in the direction of the two principal axes. 

The strain field obtained from this kinematics will be expressed by: 

 

%&& = *�*( + Ωc *Pc*(2%&� = 'Ωc'� Pc + ��� *$�*(
2%&� = 'Ωc'� Pc + ��� *$�*(

											
%�� = '���'� $�
%�� = '���'� $�

																	2%�� = +'���'� + '���'� , $�
 (21)  
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We have used above and in all that will follow, the Einstein summation convention, to simplify as 

much as possible the equations expressions. 

To determine the stress field from the strain field, we have to make use of the constitutive relation: 

 i = _̀̂
_a-&&-��-��-&�-&�-��f_g

_h =
jkk
kkk
l2/ + � � �2/ + � �2/ + � 0

m�n / / / opp
ppp
q
	 _̀̂
_a %&&%��%��2%&�2%&�2%��f_

g_
h
= rs (22)  

 

Thus : 

 

-&& = 2/ +*�*( + Ωc *Pc*( , + -t
-&� = / +'Ωc'� Pc + ��� *$�*( ,
-&� = / +'Ωc'� Pc + ��� *$�*( ,

											
-�� = 2/ '���'� $� + -t
-�� = 2/ '���'� $� + -t

-�� = / +'���'� + '���'� , $�
 (23)  

Where :   -t = �uv�s� = ��%&& + %�� + %��� = � =BwB& + $�*.!	� + Ωc BXxB& >. 

4.2. THE PRINCIPLE OF VIRTUAL WORK AND THE EQUILIBRIUM EQUATIONS: 

We write the expression of the internal virtual work: 

 Oy�Hz = L i{	Os	*|}  (24)  

 

Oy�Hz = L ~-&& +*O�*( + Ωc *OPc*( , + +-&� 'Ωc'� + -&� 'Ωc'� , OPc}
+ �-&���� + -&����� *O$�*(
+ ~-�� '���'� + -�� '���'� + -�� +'���'� + '���'� ,�O$��*| 

(25)  

 

We integrate over the whole section to obtain: 

 Oy�Hz = L +� *O�*( + �c *OPc*( + �cOPc + Λ� *O$�*( + Φ�O$�, *(�
�  (26)  
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The expressions of the generalized efforts are: 

� = L -&& 	*JM = �2/ + ��J *�*( + ���$�  (27)  

�c = L Ωc-&& 	*JM = �2/ + ���c� *P�*( + ��c�$� (28)  

�c = L +-&� 'Ωc'� + -&� 'Ωc'� ,*JM = / +�c�P� + �c� *$�*( , (29)  

Λ� = L �-&���� + -&�����	*JM = / +��� P� + ��� *$�*( , (30)  

Φ� = L +'���'� -�� + '���'� -�� + +'���'� + '���'� , -��, *JM = �/	��� + �����$� + � +�� *�*( + �c� *Pc*( , (31)  

 

The coefficients are expressed by : 

�c� = L ΩcΩ� 	*JM 			,				�c� = L � ⋅ <Ωc 	*JM 				,				��� = L � ⋅ � 	*JM 					,					�c� = L <Ωc ⋅ <Ω� 	*JM 		 
��� = L *.!	�*.!	�*JM 						,						�c� = L Ωc 	*.!	�*JM 					,						�� = L *.!	�	*JM 						,						��� = L ⊿��, ��	*JM  

Where the operator ⊿ is defined by: ⊿�� , �� = 2�<��� ⋅ <��� + <��� ⋅ <���� − ��v�� 	��v�� 

And :  ��v� = 7897� − 78:7�  

After integration by parts of the internal virtual work, we obtain: 

Oy�Hz = L +−*�*( O� − +*�c*( − �c, OPc − +*Λ�*( − Φ�, O$�, 	*(�
� + ��O� + �cOPc + Λ�O$����QRRRRRRRSRRRRRRRT�����

 (32)  

From the principal of virtual work Oy�Hz = Oy�&z, thus we can write: 

L +*�*( O� + +*�c*( − �c, OPc + +*Λ�*( − Φ�, O$�, 	*(�
� = 0 (33)  

This relation is valid for any admissible virtual displacements, then the expressions between 

brackets have to be null: 



 

 12 

 

*�*( = 0								,						 *�c*( − �c = 0				�Iv			1 ≤ � ≤ n				,				 *Λ�*( − Φ� = 0				�Iv			1 ≤ . ≤ F (34)  

 

We develop the two last equations: 

_̀̂
_a �2/ + ���c� *²P�*(² + ��c� *$�*( − / +�c�P� + �c� *$�*( , = 0
/ +��� *P�*( + ��� *²$�*(² , − �/	��� + �����$� − � 0�� *�*( + ��� *P�*( 1 = 0 (35)  

⟹	^̀
a �2/ + ���c� *²P�*(² − /¡c� *$�*( − /�c�P� = 0
/��� *²$�*(² + /¡�� *P�*( − �/	��� + �����	$� = ��� *�*(

 (36)  

From the expression of the normal force, we have the following relation: 

*�*( = 1�2/ + ��J �� − ���$�� (37)  

Thus, if we replace it in the 2nd equation in (36) we obtain : 

/��� *²$�*(² + /¡�� *P�*( − +/	��� + ���� − �²�����2/ + ��J,	$� = ����2/ + ��J� 
(38)  

We introduce some notations: 

� = �2/ + ��L ¢Ω�Ω� … Ω�Ωd⋱ ⋮m�n ΩdΩd¦ *JM 								,								§ = /L ¨� ⋅ � … � ⋅ H⋱ ⋮m�n H ⋅ H© *JM 		 

	ª = /L ¢<Ω� ⋅ <Ωd … <Ω� ⋅ <Ωd⋱ ⋮m�n <Ωd ⋅ <Ωd¦ *JM 								,										« = ��2/ + ��J ���⋮�H# 

¬ = /L ¢� ⋅ <Ω� … H ⋅ <Ω�⋮ ⋱ ⋮� ⋅ <Ωd … H ⋅ <Ωd¦ *JM 						,						 = �L ¢Ω�	*.!	� … Ω�	*.!	H⋮ ⋱ ⋮Ωd 	*.!	� … Ωd	*.!	H¦ *JM  

® = �L ¨*.!	�*.!	� … *.!	�*.!	H⋱ ⋮m�n *.!	H*.!	H© *JM 						,						¯ = /L ¨⊿��, �� … ⊿��, H�⋱ ⋮m�n ⊿�H, H�© *JM 	 
And:   ° = ¯ + ® − �2/ + ��J	«⨂«					,					² = 	¬ −  
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The system of differential equations can be written now in the following matrix form : 

�³´´ − ²µ′ − ª³ = 0 (39)  

§µ′′ + ²{³´ − °µ = «� (40)  

Where :  ³ = �P�⋮Pd# 			,			µ = �$�⋮$H# 
We note that the matrix C will be diagonal, but not necessarily the matrix K, since the warping 

functions from different transversal modes are not necessarily orthogonal. We note also that the 

differential equation system obtained in (39) and (40), is analogical to a dynamical equilibrium 

equation system for a gyroscopic system in an unstable state. In the next part, we will solve this 

system exactly to assemble the rigidity matrix; the general solution will prove to be a little exhaustive 

because we need to separate in our system the rigid body motion and flexural modes from the others, 

and this is done by making two variable changes, one for the transversal modes and another for the 

warping modes. 

 

4.3. RESOLUTION OF THE EQUILIBRIUM EQUATIONS AND DERIVATION OF THE 

STIFFNESS MATRIX: 

In order to solve the differential equation system written in (39) and (40), we first need to extract 

the rigid body motion modes, to this aim we will start by solving the generalized eigenvalue problem 

(GEP) °· = Z§·. The matrix C is the gramian matrix attached to the basis formed by the transversal 

deformation mode vectors, it will be then a definite positive matrix, and by noticing that A is a 

symmetric matrix, we can say then that the eigenvalues of our problem will be positive Z ≥ 0, and the 

number of zero eigenvalues will in fact be equal to the number of rigid body motion modes, that can 

be superior to three for some cases, for example for a global cross section formed by n disjoints 

sections, then the number of rigid body modes will be equal to 3n.   

After solving the GEP, we obtain the eigenvectors matrix P verifying: 

¹�°¹ = º»¼×¼ ¾¿				,					¹�§¹ = À (41)  
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Where G is the diagonal matrix containing the non-zero eigenvalues and q the number of rigid body modes. 

We proceed with a variable change in the eigenvectors base:  µ = ¹Áz = ¹ ÂÁ¼Á Ã 
And we note: ¹ = Ä¹� ¹�Å				,					²� = ²	¹� 			,				«� = ¹��	«					�Iv			. = 1,2 

We substitute this in equation (40) to obtain: 

¹�§¹Áz´´ + ¹�²�³´ − ¹�°¹Áz = ¹�«� 

Á¼´´ + ²�� 	³´ = «�� (42)  

Á´´ − ¾Á + ²�� 	³´ = «�� (43)  

 

We make also the variable change into the equation (39) to fully transform our system with the new variables: 

�³´´ − ª³ − ²�Á¼´ − ²�	Á´ = » (44)  

We integrate the equation (42) between 0 and x: 

Á¼´ = Á¼�´ − ²��	�³ − ³�� + «��( (45)  

We also transform the generalized effort vector  Æ = ÇΛ�È�É�ÉH associated to µ: 

rz = Êr¼r Ë = ¹�Æ = Á´z + ¹�¬�³ (46)  

⟹				 ÌÁ¼�´ = r¼� −¬��³�r = Á´ +¬��³ 		⟹ 				 ÌÁ¼´ = r¼� −�� 	³� + «��( − ²��³r = Á´ + ¬��³    (47)  

Where:  � = 	¹� = �¬ − ²�¹� = ¬� − ²�. 

If we substitute the expression of Á¼´ obtained in (47) into the equation (44) we obtain: 

�³´´ − �ª − ²�²���³ − ²�Á´ = ²��r¼� − ��	³� + «��(� (48)  

 

Thus, the system to solve is transformed into a new equivalent one: 

�³´´ −²�Á´ − ª¼³ = ²��r¼� −�� 	³� + «��(� (49)  

Á´´ +²�� 	³´ − ¾Á = «�� (50)  

Where : ª¼ = ª − ²�²�� 

As for the matrix A, the symmetric matrix ª¼ will contain some zero eigenvalues that correspond this 

time to the flexural modes, and in order to solve our system we also need to extract these modes and 
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separate them from the other warping modes, thus we have to solve the GEP  ª¼· = Z�·, with K the 

gramian matrix attached to the warping functions base, thus it’s a definite positive matrix, and as 

previously stated, this means that Z ≥ 0. 

After solving the eigenvalue problem, we obtain the eigenvectors matrix R verifying: 

Í�ª¼Í = º»�×� Î ¿				,					Í��Í = À (51)  

Where S is the diagonal matrix containing the non-zero eigenvalues and l the number of the flexural 

modes, that will be equal in general to � = 2Ï 3⁄ . 

We proceed to a second variable change:  ³ = ÍÒz = ÍÊÒ�ÒË 
And we note: Í = ÄÍ� Í�Å				,					²�c = Íc�²� 				,					�c = Íc�� 				�Iv	. = 1,2	ÓF*		� = 1,2 
We replace in the equation (49) to obtain: 

Í��ÍÒz´´ − Í�ª¼ÍÒz − Í�²�Á´ = Í�²��r¼� − ��	³� + «��(� (52)  

Ò�´´ − ²��Á´ = ²���r¼� −�� 	³� + «��(� (53)  

Ò′′ − ÎÒ − ²��	Á´ = ²���r¼� −�� 	³� + «��(� (54)  

We integrate the equation (53) from 0 to x: 

Ò�´ = ²��Á + Ô& (55)  

Where: Ô& = Ò��´ −²��Á� + ²�� 0�r¼� − ��� 	Ò�� − ��� Ò��( + «�� &²� 1. 

By replacing (55) in the equation (50) after making the variable change, we have: 

Á´´ − ¾Á + ²��� Ò′ + ²��� 	Ò�´ = «�� (56)  

Á´´ − �¾ − ²��� ²���Á + ²��� Ò´ = «�� −²��� 	Ô& (57)  

We transform the generalized effort vector Õ = Ö�c×�ÉcÉd associated to ³: 

Øz = ÊØ�ØË = Í�Õ = Í���³´ + µ� 	= Ò´z + Í�µ = Ò´z + Í��Á¼ + Í{�Á					 (58)  

⟹			 ÌÒ��´ = Ø�� − ��Á¼� −��Á�Ø = Ò´ + ��Á¼ + ��Á 		⟹ 				 Â Ò�´ = ²��Á + Ô&Ø = Ò´ + ��Á¼ +��Á (59)  

Where Ô& becomes : Ô& = Ø�� − ¬��Á� − ��Á¼� + ²�� 0�r¼� − ��� 	Ò�� − ��� Ò��( + «�� &²� 1. 

We note:  

 ¾∗ = ¾ − ²��� ²��		,			Ú& =	 ÂÚ�Ú�Ã = Ì²���r¼� − ��� 	Ò�� −��� Ò� + «��(�«�� − ²��� 	Ô& Û  
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Ü = ÊÒÁË   ,    { = ÝÀ »» ÀÞ     ,    ß = º » −²��²��� » ¿    ,    à = ºÎ »» ¾∗¿  
Thus, from (54) and (57) we can write the final system to solve: 

ÂÒ´´ − ²��	Á´ − ÎÒ = Ú�Á´´ + ²��{ Ò´ − ¾∗Á = Ú� 				⟹ 			{Ü´´ +ßÜ´ − àÜ = Ú& (60)  

We resume here all the equations that form our new system, that we will solve exactly, equivalent to 

the initial system in (39) and (40): 

_̀̂
_a �´ = ��2/ + ��J − «� ∙ Á¼ − «� ∙ ÁÁ¼´ = r¼� − ��� 	Ò�� −��� 	Ò� −²��� Ò� − ²��� ÒÒ�´ = ²��Á + Ô&{Ü´´ +ßÜ´ − àÜ = Ú&

+ «��( (61)  

 

We note á = n + F − Ï − � the dimension of the last 2nd order differential equation system. 

Now that we have uncoupled the rigid body motion and flexural modes from the other modes, we 

detail the solution of the differential equation system (62) without the second member: 

{Ü´´ + ßÜ´ − àÜ = » (62)  

{'&�Ü+ß'&Ü− àÜ = »						 ⟹ 							 �{'&� + ß'& − à�Ü = » (63)  

Where '& is the derivate about x operator. 

To solve the system we will need then to solve its characteristic equation: 

det�{å2 + ßå − à� = det�{�å2á + �I"æv	Iv*æv	uævn = 0 (64)  

T is a positive definite matrix, thus det(T)>0, this implies that the roots of the equation (64) with their 

multiplicity will be equal to 2k. Solving this equation corresponds in fact to solving a special class of 

eigenvalue problem called the quadratic eigenvalue problem QEP, see[7], where we need to find 

�å, ·� ∈ ℂ�4� verifying: 

¾�å� = �{å� +ßå − à�· = 0 

Proposition 1: If T and V are definite positive matrices, then the eigenvalues of the QEP ¾�å�· = 0 will 

be finite and non-null. 

Proof: We introduce some notations :	u�·� = ·∗{·, ��·� = ·∗ß·	, !�·� = ·∗à·, where * define the 

conjugate transpose of a matrix. For �å, ·� an Eigen-pair, we can write: 
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¾�å�· = »					 ⟹ 							 ·∗¾�å�· = u�·�å² + ��·�å − !�·� = 0 (65)  

The solution of the 2nd order equation ·∗¾�å�· = 0 will be written in the following form: 

å = −��·� ± ê��·�� + 4u�·�!�·�2u�·�  (66)  

 

T is a definite positive matrix thus u�·� > 0, it implies that å will have finite real values. V is also a 

definite positive matrix then u�·�!�·� > 0, thus ê��·�2 + 4u�·�!�·� ≠ |��·�| 		⟹ 	å ≠ 0. 

∎ 

 
Proposition 2: For T and U real symmetric matrices and V a real skew-symmetric matrix, then the 

eigenvalues of the QEP will have Hamiltonian properties, which mean that they are symmetric about 

the real and imaginary axis of the complex plane.  

Proof: G verifies the following relations: 

¾�å�∗ = ¾�å�{ðððððððð = {åñ2 − ßåñ − à = ¾�−åñ� (67)  

T, U and V are real matrices, thus : ¾�å�� = ¾�−å� 
From these two relations verified by G we can deduce that if å is an eigenvalue then åñ, −åñ and	−å 

are also eigenvalues of the problem. 

∎ 

 
The solution of a QEP is performed with the aid of a linearization, which transforms the problem to a 

classical generalized eigenvalue problem: 

Ý» Àà −ßÞ ÊòóË = å ÝÀ »» {Þ ÊòóË (68)  

Where : ò = ·, ó = å· 
After the resolution of this problem we obtain 2k eigenvalues assembled in the diagonal matrix S, and 

Í�×�� there corresponding eigenvectors matrix. Thus the solution of the system can be written in the 

following form: 

Ü& = ÍôÎ&õ (69)  
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Where õ ∈ ℝ�� is a vector of arbitrary constants that will be expressed later in function of the 

boundary conditions. 

Knowing that the eigenvalues verify Hamiltonian properties, we can re-arrange the matrix S and R in 
the following way: 
 

Î = jk
klÎ� −Î� »

» Î� Î�ðððop
pq = jk

klÎ� −Î� »
» Î�t Î�top

pq + . ÷ » » »
» Î�� −Î��ø = Ît + .Î�  (70)  

Í = Ä		ù� −ù� ù� ùñ �	Å = Ít + .Í� 	 (71)  

 

Where Ît, Î�, Ít and Í� are real matrices, and i is the complex number verifying i²=-1. 

Proposition 3 : The solution of the differential equation system in (62) can be written in a real form as 

follows:  

Ü& = �Ívú& + Í�û&�ôÎü&õ (72)  

Where: 

ú& = jkk
l À À »

» ý�& ýþ&op
pq		,			û& = jkk

l À À »
» ýþ& ý�&op

pq		,			ýþ& = �Im�Î��(�		,			ý�& = m.F�Î��(� (73)  

 

Proof : see appendix A3. 

∎ 

 
To complete the solution of our system, we write its particular solution: 

Ü & = L ÍôÎ�&5z��Úz	*u(
0 = ÍôÎ&L ô5Îz�Úz	*u(

0  (74)  

Where R and L are respectively the right and left eigenvectors, verifying the following relations: 

Í� = »							,						{ÍÎ� = À (75)  

And : 

Ú& = 	 ÂÚ�Ú�Ã = _̀̂
_a ²���r¼� − ��{ 	Ò�� − ��{ Ò� + «��(�
«�� −²��{ 	~Ø�� 	− ¬��Á� − ��Á¼� + ²�� ��r¼� − ��{ 	Ò�� − ��{ Ò��( + «�� (²2 ��f_g

_h
 (76)  
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Ú& = Ì ²���r¼� − ��{ 	Ò�� − ��{ Ò��«�� − ²��{ 	�Ø�� − ¬��Á� − ��Á¼��ÛQRRRRRRRRRRRSRRRRRRRRRRRT�V
+ Ì ²��«��−²��{ ²���r¼� −��{ 	Ò�� − ��{ Ò��ÛQRRRRRRRRRRRSRRRRRRRRRRRT�W

( − 12 Â »²��{ ²��«��ÃQRRRRSRRRRT��
(� 

(77)  

Ú& = �� + ��( − ��(² 
Proposition 4 : For a differential equation system: {Ü´´ + ßÜ´ − àÜ = Ú&, if the second member Ú& has the 

following form: Ú& = ∑ Ú�(�H�e� , then the particular solution Ü  of the system can be written as follows: 

Ü = −bÍÎ5�5��	Ú&���H
�e�  (78)  

Where Ú&��� denote the ith derivate of Ú& about x. 

Proof: see appendix A4. 

∎ 

Thus, the particular solution of our system is: 

Ü & = −à5�Ú& − à5�ßà5���� − 2��(� + 2�à5�{à5� + à5��ßà5������ (79)  

We can write the total solution of the system : 

Ü& =�&õ + ¾�Á¼� + ¾�Á� + �¾� + ¾�(��r¼� −��{ 	Ò�� − ��{ Ò�� + ¾	Ø�� + �¾
 + ¾�( + ¾�(²�� (80)  

Where : 

�& = �Ítú& + Í�û&�ôÎ& 

¾� = −à5� º »²��{ ��¿	,			¾� = −à5� º »²��{ ¬��¿			,			¾� = à5� 0ßà5� º »²��{ ²��	¿ − Ý²��» Þ1		,			¾� = à5� º »²��{ ²��	¿ 
¾	 = à5� º »²��{ 	¿ 			,			¾
 = à5� +�{à5� + �ßà5���� º »²��{ ²��«�	¿ − ßà5� Ý²��«�»	 Þ − º »«�	¿,	 
	¾� = à5� 0ßà5� º »²��{ ²��«�	¿ − Ý²��«�»	 Þ1		,			¾� = 12à5� º »²��{ ²��«�	¿ 
We express the limit conditions at the two extremities of the beam, in x = 0 and L: 

Ü� − ¾�Á¼� − ¾�Á� − ¾��r¼� − ��{ 	Ò�� − ��{ Ò�� − ¾	Ø�� − ¾
� =��õ (81) 

Ü� − ¾�Á¼� − ¾�Á� − �¾� + ¾����r¼� − ��{ 	Ò�� − ��{ Ò�� − ¾	Ø�� − �¾
 + ¾�� + ¾��²�� =��õ (82) 
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We assemble (81) and (82) to obtain the expression of the vector a : 

õ = º����¿5� ºÀ » −¾�» À −¾�			−¾� −¾� −¾	−¾� −�¾� + ¾��� −¾				 −¾
−�¾
 + ¾�� + ¾��²�¿ _̂_̀
__a

Ü�Ü�Á¼�Á�r¼� − ��{ 	Ò�� − ��{ Ò�Ø��� f__
g
__h
 

Thus, we can express the vector a in function of the boundary values: 

õ = ¯�Ü� +¯�Ü� +¯�Á¼� +¯�Á� +¯��r¼� − ��{ 	Ò�� − ��{ Ò�� + ¯�Ø�� +¯	� (83)  

 

And by noting: ¯��Ü� = Ä» ¯�Å ÊÒ�Á�Ë		 , ¾�� = Ä» ¾�Å	, ¯�� = Ä¯���{ »Å		, ¾�� = Ä¾���{ »Å		. = 3,4 

We can re-express our solution in the following form: 

Ü& = =¾�� + ¾�� + ¾��( +�&�¯� +¯�� +¯���>Ü� +�&¯�Ü� + �¾� +�&¯��Á¼�
+ �¾� + ¾�( +�&¯���r¼� − ��{ 	Ò��� + �¾	 +�&¯��Ø��
+ �¾
 + ¾�( + ¾�(² +�&¯	�� 

(84)  

 

Ü& = ��&��� + ��&��� (85)  

 

Where: �& = � �Á¼Ò�Ü� 			,			��� = Ê����Ë				,			�& = _̀̂
_a�r¼Ø�Ørf_g

_h			,				��� = Â����Ã 

��& = �»				¾� +�&¯� −�¾� + ¾�( +�&¯����{ ¾�� + ¾��( +�&¯���				»					» » �&¯�� (86) 

��& = Ä�¾
 + ¾�( + ¾�(² +�&¯	�				¾� + ¾�( +�&¯� ¾	 +�&¯� »				»					» » »Å (87) 

 

And : ¯��� = ¯� +¯�� +¯�� 					,				¾�� =	¾�� + ¾�� 
We note: 

Ü5�& = L Üz*u&
� = �5�,�&��� + �5�,�&���							,					�5�,�& = L ��z*u&

� 			,					�5�,�& = L ��z*u&
�  (88)  
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Ü5�& = L Ü5�z*u&
� = �5�,�&��� + �5�,�&���			,					�5�,�& = L �5�,�z*u&

� 			,					�5�,�& = L �5�,�z*u&
� 		 (89)  

Ü�& = Ü′& = ��,�&��� + ��,�&���			,					��,�& = *��&*( ,					��,�& = *��&*(  (90)  

 

For the calculation of the integrals and derivative of Ü&, see appendix 5. 

By using the solution of the system, we obtain Á that we can replace in the 3rd equation of (62) to 

obtain Ò�´ and by integrating we obtain Ò� in function of the boundary conditions: 

Ò�´ = ²��Á + Ô& 
Ò� = Ò�� + Ô5�& +²��L Á	*u&

�  

Ò� = Ò�� + Ô5�& + ²��	°�	��5�,�&��� + �5�,�&���� 
⟹					Ò� = ®�&��� + ®�&��� (91)  

 

Where: °� = Ä» ÀÅ	, Ô5�& = ] Ôz*u&� = �Ø�� − ¬��Á� − ��Á¼��( + ²�� +�r¼� −��{ 	Ò�� − ��{ Ò�� &²� + «�� &�
 , 
With	Ò and Ò� obtained, we can replace then in the 2nd equation of (62) to obtain Á¼′ and by 

integrating we obtain Á¼  in function of the boundary conditions: 

Á¼´ = r¼� − ��{ 	Ò�� − ��{ 	Ò� − ²��{ Ò� − ²��{ Ò 
Á¼´ = r¼� − ��{ 	Ò�� − ��{ 	Ò� − ²��{ �Ò�� + Ô5�& +²��°�	Ü5�&� − ²��{ °�	Ü& 

Á¼ = Á¼� + �r¼� −��{ 	Ò�� − ��{ 	Ò��( − ²��{ =Ò��( + Ô5�& + ²��{ °�	��5�,�&��� + �5�,�&����>
− ²��°�	��5�,�&��� + �5�,�&����	 

⟹					Á¼ = ¯�&��� +¯�&��� (92)  

 

Where: °� = ÄÀ »Å	, Ô5�& = ] Ô5�z*u&� = �Ø�� −¬��Á� − ��Á¼�� &²� + ²�� +�r¼� − ��{ 	Ò�� −��{ Ò�� &�
 + «�� &���, 
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The resolution is completed by performing a simple variable change to obtain the original vectors ³ 

and µ. To derive the rigidity matrix, we will as in Ferradi et al[1], assemble all the equilibrium 

equations that we will express at the two extremities of the beam, in x=0 and x=L. 

From (46) and (58) we have: 

ÌØ = Ò´ + ��Á¼ + ��Ár = Á´ + ¬��{ Ò� + ¬��{ Ò 		⟹				 ÊØrË = ��,�&��� + ��,�&��� + º» �� »» » ¬��{ 			 » ��¬��{ » ¿�& (93)  

 

This system is expressed at the two extremities of the beam, at x=0 and x=L, so we obtain 2k equations: 

�Ø�r�Ø�r��− º��,����,��¿ ��� = �
�	º��,����,��¿ + jkk

l» �� »» » ¬��{ 			 » ��¬��{ » »
» » �� »» » ¬��{ 			 » ��¬��{ » opp

q	�
� 	��� (94)  

 

We also have from (46) and (58) the expression of the generalized efforts vectors r¼ and Ø�, that we 

will express in function of the boundary values: 

Ìr¼ = Á¼´ +¬��{ Ò� +¬��{ ÒØ� = Ò�´ + ��Á¼ + ��Á 			⟹ 			 Âr¼Ø�Ã = º¯�,�&®�,�& ¿��� + º¯�,�&®�,�& ¿��� + º» » ¬��{» �� » 			¬��{ »» ��¿�& (95)  

 

Where:  ®�,�& = B®��B& ,					®�,�& = B®��B& 				,				¯�,�& = B¯��B& 				,					¯�,�& = B¯��B&  

We express (96) only at x=L, to obtain q+l equations: 

Âr¼�Ø��Ã − º¯�,��®�,�� ¿ ��� = º¯�,��®�,�� ¿��� + º» » ¬��{» �� » 			¬��{ »» ��¿��  (96)  

 

By expressing Á¼  and Ò� at x=L, we obtain the remaining q+l equations: 

º¯��®�� ¿��� = 0	º¯��®�� ¿ − 	 Ý» » »» » »			» »» » » À »» » À			» »» »Þ1���  (97)  

 

And finally from the integration of the 1st equation in (62) and the equilibrium equation 
B B& = 0, we 

add the two following equations (98) and (99): 
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�� − �� = ����2/ + ��J − «� ∙ L Á¼*(�
� − «� ∙ L Á	*(�

�  

	�� − �� = ����2/ + ��J − «� ∙ �¯5�,�&��� +¯5�,�&���� − «� ∙ °�	��5�,�&��� + �5�,�&���� 
⟹	�� − �� + �	¯5�,�&{ 	«� + �5�,�&{ 	°�{«�� ∙ ��� = ����2/ + ��J − �	¯5�,�&{ 	«� + �5�,�&{ 	°�{«�� ∙ ��� (98)  

 

�� − �� = 0 (99)  

 

Where: ®5�,�& = ] ®�z*u&� 			,					®5�,�& = ] ®�z*u&� 			,					¯5�,�& = ] ¯�z*u&� 			,					¯5�,�& = ] ¯�z*u&�  

Thus, by assembling all these equations we obtain a system of 2(m+n+1) equations, written in the 

following form: 

��	��� = ��	��� 				⟹ 					��� = ��5�	��QRRSRRT�ü
	��� 

(100) 

 

�t is then the rigidity matrix of the beam element, derived from the exact solution of the equilibrium 

equation. This matrix was implemented in Pythagore™ software. 

For quasi-incompressible materials (6 ↦ 0.5	 ⟹ 		� ↦ +∞), a special attention must be given to the 

transversal modes we are using in our kinematics to avoid incompressible locking. In the expression of 

the stress tensor in eq.23, we have the apparition of the stress -t = �uv�s� = � =BwB& + $�*.!	� + Ωc BXxB& >, 

thus when � ↦ +∞ we need to be able represent uv�s� = 0, and this can be assured by associating to 

every warping mode Ωc, a transversal deformation mode c∗, constructed in a way to compensate the 

warping mode, and thus to satisfy uv�s� = 0 when it’s needed. These newly determined transversal 

modes will be called ‘incompressible deformation modes’ and will verify the relation *.!	c∗ = %c. We 

have also noticed that even for 0 < υ < 0.5 (for example υ = 0.3 for steel) the error in the results cannot 

be negligible if we do not consider the ‘incompressible deformation modes’, thus we have chosen in all 

our examples to take υ = 0 to avoid any discrepancy, noting that this subject will be treated in detail in 

upcoming work. 
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5. THE GENERALIZED EFFORT VECTOR : 

We have the displacement vector of an arbitrary point P of the section: 

� = �� ! " # =
_̂__̀
___
a� +bΩcPcd

ce�
b��� $�H
�e�
b���$�H
�e� f__

_g
___
h
				⟹ 					 � = ¨100					

0 … 0��� … ��H��� … ��H
Ω� … Ωd0 … 00 … 0 ©QRRRRRRRRRRSRRRRRRRRRRT® _̂_̀

__a
�$�⋮$HP�⋮Pdf__
g
__h

QST�
 (101) 

 

Where d is the vector representing the generalized coordinates. 

If we apply at the point P a force represented by its vector Ú , we will have the following equivalent 

generalized stress resultants : 

Ú = ������# 		⟹ 			Ú = ®�Ú 			⟹ 				Ú =
_̂_̀
__a

������ + �����⋮��H�� + ��H��Ω��⋮Ωd� f__
g
__h

 (102) 

 

6. NUMERICAL EXAMPLES : 

In all the examples presented in this section, we will perform three types of comparisons, one 

concerns the comparison of the displacement at the section where the load is applied and where the 

effect of the higher transversal modes will be important, the 2nd concerns the normal stress at x=0.05m 

the vicinity of the fixed end, where the effect of restrained warping is the most important and the 

effect of the higher warping modes are non-negligible and the 3rd concerns the shear stress in the 

upper slab at x=0.95m. 

For all the figures representing the numerical results, the table 1 and 2 give the transversal modes 

used for each beam model in the figure and the number of corresponding warping modes used for 

each transversal mode and gives also the type of cross section used in the beam models, 1D if the cross 

section is discretized with 1D (or beam) element and 2D if it’s discretized with triangular element. 
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Box girder: 

We consider in the following examples a 10m length cantilever beam, with E=40 GPa and υ=0, 

loaded at its free end. The comparisons will be performed between a shell model of the cantilever 

beam using the well-known MITC- 4 shell element described in [8], and a model with just one element 

of the new beam finite element, using different numbers of transversal modes. All comparisons have 

been performed with Pythagore™ Software. 

The boundary conditions of the considered example are: 

• No displacement at the beam’s bearing: � = 0, Pc = 0, $� = 0 for all warping and transversal 

modes. 

• At the free end: 
BXxB& = 0, 

BC(B& = 0. 

For the beam cross section we choose a box girder represented in figure 3. Some numerical values 

for the matrices in p.12 are given in appendix A7. 

 
Figure 3 : A view of the shell model of the beam and its cross section. 

The beam cross section will be discretized in two manners, the 1st one with 7024 2D triangular 

elements, and the 2nd one as a thin walled section with 6 1D elements. For the representation of the 

warping and transversal modes see appendix A6.  

For the shell model of the beam, to obtain accurate results we use a refined meshing, where the 

dimension of the small square element is 0.1m, the model will then comport 6000 shell element, 6060 

nodes and 36360 degree of freedom. To measure the effect of the meshing refinement and its necessity 

for the shell model of the beam, we will compare the different results obtained from shell models with 

different meshing. 
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We consider as a 1st load case a centred force Ty=-1MN at the upper slab of the box cross section 

and at the free end of the cantilever beam, see figure 4.  

 

 

 

 
Figure 4: beam cross section with the centred applied load. 

 

 
 

Table 1: the transversal modes with their corresponding warping modes for the beam models used in the listed figures.  

 

 

 

Beam 
model 
(type of 
cross 
section) 

Transversal 
modes 

Corresponding 
warping modes 

Figure 5 A (1D) 
1 5 

2-3 1 

Figure 6 

A(2D) 
1 4 

2-3 1 

B(2D) 
1 2 

2-3 1 

Figure 7 

A(2D) 
1 2 

2-10 1 

B(2D) 
1 2 

2-12 1 

C(2D) 
1 2 

2-20 1 

D(2D) 
1 2 

2-3 1 

Figure 8 

A(2D) 
1 2 

2-3 1 

B(2D) 
1 2 

2-20 1 

 

Beam 
model 
(type of 
cross 
section) 

Transversal 
modes 

Corresponding 
warping modes 

Figure 
12 

A(2D) 
1 2 

2-3 1 

B(2D) 
1 2 

2-6 1 

C(2D) 
1 2 

2-10 1 

Figure 
14 

A(2D) ; 
B(1D) 

1 5 

2 1 

3 4 

Figure 
15 

A(2D) 

1 5 

2 1 

3 4 

4-6 1 

B(2D) 
1 2 

2-3 1 
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Figure 5 : Comparison of the normal stresses between the shell and the beam model, at x= 0.05m and at mid-
depth of the upper slab (Ty = -1 MN) 

 

Figure 6 : Comparison of the shear stress xz between the shell and the beam models, at x= 0.95m and at mid-
depth of the upper slab (Ty = -1 MN) 

 

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

SHELL MODEL

BEAM MODEL A

BEAM MODEL B

Z(m)

Shear stress xz (KN/m²)

-74000

-72000

-70000

-68000

-66000

-64000

-62000

-60000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

SHELL

Beam model A (cross

section with 1D element)
NORMAL STRESS KN/m²

Z(m)



 

 28 

 

 
Figure 7 : Comparison of the displacement between the shell and the beam models, at x= 10m and at mid-

depth of the upper slab (Ty = -1 MN) 
 
 

Figure 8 : Comparison of the vertical displacement along the beam length between the shell and the beam models. 
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Figure 9 : representation of the generalized coordinates associated with the higher transversal modes(4-20) along 
the beam’s length, for the beam model C in Fig.7. 

Figure 10 : Comparison of the results obtained from the shell model with different mesh size. 

The Fig.5 illustrate the fact that in this example the shear lag effect near the fixed end is correctly 

predicted by using five warping modes for the vertical displacement mode. Fig.6 shows that we have 

a precise representation of shear stress distribution with only three transversal modes (rigid body 

motion) and four warping modes associated to the vertical displacement mode. 
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In Fig. 7, we can see that the beam model B (12 transversal modes) gives satisfactory results that still 

can be refined by using more transversal modes, and this is performed with the beam model C (20 

transversal modes). We can see also from Fig.7 that at the connections between the upper slab and the 

two webs (z=-0.5m and z=0.5m), the vertical displacement is exactly the one corresponding to a rigid 

body motion, and this is valid for the shell and all the beam models. The figures 8 and 9 shows that 

the effect of the higher order transversal modes become more and more important when we approach 

the loading zone, Fig.8 shows also that we obtain a precise description of the vertical displacement 

distribution along the beam, especially near the loading zone.  

From Fig.10, we deduce that the refined shell model of the beam, with a mesh size equal to 0.1m, 

is necessary to obtain accurate prediction of the vertical displacement at the loading cross section. This 

model has 6000 shell elements, 6060 nodes, with a total of 36360 d.o.f., and compared to the beam 

model B with one beam element and twelve transversal modes, with a total of 50 d.o.f., it shows the 

advantage of using such enriched beam element, even if it necessitate some preliminary cross section 

treatment to obtain the transversal and warping modes characteristics, because this step will be done 

only once and we can after perform as many calculation as we want with different loadings and 

configurations with the same reduced number of degree of freedom. We can see also that solving the 

equilibrium equations exactly, allows us to obtain accurate results without using a refined meshing of 

our beam element, and this is showed in the numerical examples where only one beam element is 

needed. 

As a 2nd load case, we apply the same vertical force Ty=-1MN at the upper slab but eccentric 

from the centre of gravity and torsion (z=0.5m), see figure 11.  

 

 

 

 

Figure 11: beam cross section with the excentred applied load. 
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Figure 12 : Comparison of the displacement between the shell and the beam models, at x= 10m and at mid-depth 
of the upper slab (Ty = -1 MN) 

 
 

 
 

Figure 13 : representation of the generalized coordinates associated to the higher transversal modes(4-10) along 
the beam’s length, for the beam model B in Fig.12. 
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Figure 14 : Comparison of the normal stresses between the shell and the beam model, at x= 0.05m and at mid-

depth of the upper slab (Ty = -1 MN) 
 

 

Figure 15 : Comparison of the shear stress xz between the shell and the beam models, at x= 0.95m and at mid-
depth of the upper slab (Ty = -1 MN) 
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in accordance with the results of Fig.12, where there is no difference in the displacement distribution 

obtained with a beam model enriched with 6 or 10 transversal modes. 

The figures 14 and 15 compare the stress distribution between shell and beam models, the results 

clearly show the effectiveness of the enriched beam model. 

 

Double T cross section: 

In this example we consider a 12m beam clamped at its both end and loaded with an eccentric (z=2m) 

vertical force of 10MN in its middle(x=6m), see Fig.16, the material characteristics will be the same as 

the previous example. We will use two beam finite elements to discretize the whole beam. To test the 

performance of our beam element, we will perform a comparison with a shell (MITC-4 element) and a 

brick (SOLID186 in AnsysTM) model of the beam (Fig.17). 

 

Figure 16: A view of the beam cross section. 

 

Figure 17: A view of the brick model of the beam. 
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Beam 
model 
(type of 
cross 
section) 

Transversa
l modes 

Corresponding 
warping modes 

Figure 
18 

A (1D) 
1 2 

2-3 1 

B(1D) 
1 2 

2-6 1 

C(1D) 
1 2 

2-10 1 

D(2D) 
1 2 

2-10 1 

Figure 
19 

A(1D) 

1 4 

2 1 

3 4 

B(2D) 

1 4 

2 1 

3 4 

Figure 
20 

A(1D) 

1 4 

2 1 

3 4 

B(2D) 

1 4 

2 1 

3 4 

Table 2: the transversal modes with their corresponding warping modes for the beam models used in the listed figures.  

 

Figure 18: Comparison of the displacement between the brick, shell and the beam models, at x= 6m and at mid-
depth of the upper slab (Ty = -10 MN) 
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Figure 19 : Comparison of the normal stresses between the brick, shell and beam model, at x= 0.05m and at mid-
depth of the upper slab (Ty = -10 MN) 

 

 
 
Figure 20 : Comparison of the shear stress xz between the brick shell and beam models, at x= 0.95m and at mid-

depth of the upper slab (Ty = -10 MN) 
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Figure 21 : representation of the generalized coordinates associated to the higher transversal modes(4-10) along 
the beam’s length, for the beam model C in Fig.18. 

 

The figures 18, 19 and 20 illustrate the comparison between a brick & shell models of the beam with 

our beam finite element models, showing the efficiency and the accuracy of our formulation. We note 

from Fig. 19 and 20 that the beam models B, with a cross section meshed with 2D triangular element is 

more close to the brick model. The beam models A, with a cross section meshed with 1D elements can 

be more closely compared to the shell model. 

 

7. CONCLUSION: 
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enriched with transversal and warping eigenmodes, capable of representing the deformation and the 

displacement field of the beam in a very accurate way. A complete description of the method to derive 

these modes for an arbitrary section form is given. Theoretically we can determine as many warping 

modes as we want to enrich our kinematics, but we have observed that the number of modes that we 

can derive accurately is limited, due to the numerical errors accumulated in every new iteration of the 
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The additional transversal and warping modes give rise to new equilibrium equations associated 

with the newly introduced d.o.f. corresponding to each mode, forming a system of differential 

equations that can be assimilated to a one obtained from a gyroscopic system in an unstable state. An 

exact solution of these equations is performed, leading to the formulation of the rigidity matrix of a 

mesh free element. However we must note a limitation to this formulation: we need to calculate the 

exponential of a scalar (corresponding to an eigenvalue of the equation system) multiplied by the 

beam’s length, if this product is great enough, its exponential can’t be calculated in the range of a 

classical machine precision, a solution would be to discretize sufficiently the beam to reduce the 

length of the beam elements, or to eliminate the corresponding mode associated to this eigenvalue. 

 

APPENDIX A1: Stiffness matrices for the triangular and the 1D element. 

For the 1D element, we use the stiffness matrix of a planar Euler-Bernoulli element, expressed by: 

 

�) =

jk
kkk
kkk
kkk
kl*J� 0 0 −*J� 0 012*+�� 6*+�� 0 − 12*+�� 6*+��4*+� 0 − 6*+�� 2*+�*J� 0 0

m�n 12*+�� − 6*+��4*+� op
ppp
ppp
ppp
pq

		 a.1 

 

Where J = u² is the surface, t the thin walled profile thickness, l its length and + = u� 12⁄  its inertia. 

For the triangular element, we use the rigidity matrix in planar stress, expressed by: 

�z = *u4Δ�1 − 6²�
jkk
kkk
lÓ�� + Z-�� �Z + 6�Ó�-� Ó�Ó� + Z-�-� 6Ó�-� + ZÓ�-� Ó�Ó� + Z-�-� 6Ó�-� + ZÓ�-�-�� + ZÓ�� 6Ó�-� + �Ó�-� -�-� + ZÓ�Ó� 6Ó�-� + ZÓ�-� Ó�Ó� + Z-�-�Ó�� + Z-�� �6 + Z�Ó�-� Ó�Ó� + Z-�-� 6Ó�-� + ZÓ�-�-�� + ZÓ�� 6Ó�-� + ZÓ�-� Ó�Ó� + Z-�-�m�n Ó�� + Z-�� �6 + Z�Ó�-�-�� + ZÓ�� opp

ppp
q
		 a.2 
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Where ∆ is the triangular element surface, t its thickness and Z = �1 − 6� 2⁄ . 

And for �(�, ���, �(�, ���, �(�, ��� the triangular element nodes coordinate we have: 

Ó� = �� − �� Ó� = �� − �� Ó� = �� − ��-� = (� − (� -� = (� − (� -� = (� − (�  

 

APPENDIX A2 : derivation of the warping functions for thin walled profiles. 

For thin walled profiles we make two approximations: 

• The tangential shear stress in the cross section is tangential to the thin walled profile. 

• The tangential shear stress is constant in the thin walled profile thickness. 

The expression of the tangential shear stress vector is given by: 

; = /� − <Ω� *$*( 

.� = ; ∙ / 
.� = /� ∙ / − <Ω ∙ /� *$*( 									⟹ 										 'Ω'm =  ∙ /− .�/ *$*( a.3 

Where t is the tangential vector to the thin walled profile, and <Ω ∙ / = 7G7�  

For a section free to warp, we have as already written: 

'� '( = 0			 ⟹ 				Ω *�$*(� = 0			 ⟹ 			 *$*( = �mu 
We consider then that  / BCB& = �0 , with J a constant. We can then write: 

'Ω'm =  ∙ / − �.� 								⟹ 								 '�Ω'm� = ''m � ∙ /� − � '.�'m 							 a.4 

 

We write the equilibrium equation of the beam: 

'-&&'( + *.!	; = '-&&'( + '.�'m = 0 

� '.�'m = − �/ 	*.!	 a.5 
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After replacing this in the equation a.2, we obtain : 

'�Ω'm� = ''m � ∙ /� + �/ 	*.!	 a.6 

By integrating this equation twice, we obtain Ω as a function of its limit values in the extremities of the 

thin walled profile. After assembling the equations expressing Ω for each thin profile constituting the 

section, we obtain a system of equations that can be solved to an additive constant, thus to solve the 

problem uniquely we add the condition ] Ω	*1 = 02 . 

APPENDIX A3 : proof of proposition 3. 

We replace the obtained solution ÍôÎ&õ in the equation system: 

�{ÍÎ² + ßÍÎ − àÍ�ôÎ(õ = » a.7 

This relation is valid for an arbitrary vector a, thus: 

{ÍÎ² + ßÍÎ − àÍ = » a.8 

By developing this relation we obtain: 

�{�Í�Î3 − Î�3� − 2Í�Î�Î� + ß�ÍÎ − Í�Î�� − àÍ�
+ .�{�Í��Î3 − Î�3� + 2ÍÎ�Î� + ß�ÍÎ� + Í�Î� − àÍ�� 	= » a.9 

 

Thus, we have the following two formulas: 

{�Í�Î3 − Î�3� − 2Í�Î�Î� + ß�ÍÎ − Í�Î�� − àÍ = » a.10 

{�Í��Î3 − Î�3� + 2ÍÎ�Î� + ß�ÍÎ� + Í�Î� − àÍ� = » a.11 

 

We calculate now the first and second derivate of Ü& = �Íú + Í�û�ôÎ&õ : 
Ü(′ = �ÍÎú + ÍÎ�û + Í�Îû − Í�Î�ú�ôÎ4õ   
Ü(′′ = �Í�Î3 − Î�3�ú + 2ÍÎ�Îû + Í��Î3 − Î�3�û − 2Í�Î�Îú�ôÎ4õ 
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We replace the expressions of the derivatives in the equation system (62) to obtain: 

{Ü&´´ +ßÜ&´ − àÜ&
= �{�Í�Î3 − Î�3� − 2Í�Î�Î� + ß�ÍÎ − Í�Î�� − àÍ�ôÎ4úõ
+ �{�Í��Î3 − Î�3� + 2ÍÎ�Î� + ß�ÍÎ� + Í�Î� − àÍ��ôÎ4ûõ 

a.12 

 

Thus, from the equations a.10 and a.11 that we replace in a.12, we obtain {Ü&´´ + ßÜ&´ − àÜ& = », 
which verify that Ü& = �Íú + Í�û�ôÎ&õ is a solution of the system. 

APPENDIX A4 : proof of proposition 4. 

We suppose that the 2nd member f is of the form Ú& = ÚH(H, we suppose then that the particular 

solution will be given by: 

Ü = −bÍÎ5�5��	Ú&���H
�e� = −bÍÎ5�5��	ÚH(H5� F!�F − .�!

H
�e�  a.13 

 

We calculate the expression of àÜ , ßÜ′  and {Ü′′  : 

àÜ = −bàÍÎ5�5��	ÚH(H5� F!�F − .�!
H
�e� = −àÍÎ5��ÚH(H − àÍÎ5��ÚHF(H5� −bàÍÎ5�5��	ÚH(H5� F!�F − .�!

H
�e�  

ßÜ′ = −bßÍÎ5�5��	ÚH(H5�5� F!�F − . − 1�!
H5�
�e� = −ßÍÎ5��	ÚHF(H5� −bßÍÎ5��	ÚH(H5� F!�F − .�!

H
�e�  

{Ü′′ = −b{ÍÎ5�5��	ÚH(H5�5� F!�F − . − 2�!
H5�
�e� = −b{ÍÎ5�4��	ÚH(H5� F!�F − .�!

H
�e�  

Thus : 

{Ü´´ + ßÜ´ − àÜ 
= àÍÎ5��ÚH(H − �ßÍÎ − àÍ�Î5��ÚHF(H5�
−b�{ÍÎ3 + ßÍÎ − àÍ�Î5�5��	ÚH(H5� F!�F − .�!

H
�e�  

a.14 

By using the following relations deduced from the equations (75): 

{ÍÎ3 + ßÍÎ − àÍ = »						,						�ßÍÎ − àÍ�Î5�� = {Í� = »						,						ÍÎ5�� = à5� 
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We verify that:  {Ü′′ + ßÜ′ − àÜ = ÚH(H, thus Ü  is a particular solution system, and by the 

superposition principle, its straightforward that for a 2nd member in the differential equation system 

of the form Ú& = ∑ Ú�(�H�e�  the particular solution is Ü = −∑ ÍÎ5�5��	Ú&���H�e� . 

APPENDIX A5 : 

In the calculation of the integrals and the derivative of Ü& expressed in the relations (85), (86) and (87), 

the only difficulty is the calculation of the integrals and derivative of �& = �Ítú& + Í�û&�ôÎ& used in 

its expression. Thus, we want to calculate the expression of �5�&, �5�&, �5�& and ��&:  

 

�5�& = L �z*u&
� 						,						�5�& = L �5�z*u&

� 							,						�5�& = L �5�z*u&
� 							,						��& =�′& a.15 

 

We have the expression of �& 	: 
�& = �Ítú& + Í�û&�ôÎ&

= �
�Ít jkk

læÎV& æ5ÎV& 0
0 ý�&æÎWü& ýþ&æÎWü&op

pq+ Í� jkk
læÎV& æ5ÎV& 0

0 ýþ&æÎWü& ý�&æÎWü&op
pq		�
� 

a.16 

 

If we note  = ÷» »» » À» À » ø and Ít� = Ít + Í� then we can express �& in the following form : 

�& = Ít� jkk
læÎV& æ5ÎV& 0

0 ý�&æÎWü& ýþ&æÎWü&op
pq a.17 

 

The 1st integral of �& will be expressed by : 

�5�& = Ít�
jkk
kkk
kkk
lL æÎ6z*u&
� L æ5Î6z*u&

�
0

0 L ý�zæÎWüz*u&
� L ýþzæÎWüz*u&

� opp
ppp
ppp
q
 a.18 
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We need to calculate:  ] ýþzæÎWüz*u&�   and ] ý�zæÎWüz*u&� . This is performed easily by using the complex 

number: 

L ýþzæÎWüz*u&
� + . L ý�zæÎWüz*u&

� = L æ�ÎWü4�ÎW(�z*u&
� = �Î�t + .Î���5��æ�ÎWü4�ÎW(�& − À�

= �Î�t� + Î��� �5��Î�t − .Î���=�ýþ& + .ý�&�æÎWü& − À>
= 0=�°�týþ& + °��ý�&�æÎWü& − °�t> + .=�°�tý�& − °��ýþ&�æÎWü& + °��>1 

Where : °�t = �Î2v2 + Î2.2 �−1Î2v				,				°�t = �Î2v2 + Î2.2 �−1Î2.	. 
Thus :  

L ýþzæÎWüz*u&
� = �°�týþ& + °��ý�&�æÎWü& − °�t a.19 

L ý�zæÎWüz*u&
� = �°�tý�& − °��ýþ&�æÎWü& + °�� 	 a.20 

With a.19 and a.20 we can then determine �5�& easily.  

In the same way, for the calculation of �5�& we will need to calculate ] =�°�týþz + °��ý�z�æÎWüz −&�
°�t>*u and ] =�°�tý�& − °��ýþ&�æÎWü& + °��>*u&� , this can be done by using the expressions in a.19 and 

a.20. Thus: 

L =�°�týþz + °��ý�z�æÎWüz − °�t>*u&
�

= °�t=�°�týþ& + °��ý�&�æÎWü& − °�t> + °��=�°�tý�& − °��ýþ&�æÎWü& + °�� 	> − °�t(
= =�°�t� − °��� �ýþ& + 2°�t°��ý�&>æÎWü& − °�t( + °��� − °�t�  

a.21 

L Ä�°�tý�z − °��ýþz�æÎWüz + °��Å*u&
�

= °�t=�°�tý�& − °��ýþ&�æÎWü& + °��> − °��=�°�týþ& + °��ý�&�æÎWü& − °�t> + °��(
= =�°�t� − °��� �ý�& − 2°��°�týþ&>æÎWü& + °��( + 2°��°�t 

a.22 
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Finally for the 3rd integral, it will be expressed with the aid of the two following integrals: 

L 0=�°�t� − °��� �ýþz + 2°�t°��ý�z>æÎWüz − °�tu + °��� − °�t� 1 *u&
�

= ��°�t� + °��� °�t�ýþ& − �°��� + °��°�t� �ý�&�æÎWü& − °�t (�2 + �°��� − °�t� �( − �°�t� − °��� °�t� 
a.23 

L 0=�°�t� − °��� �ý�z − 2°��°�týþz>æÎWüz + °��u + 2°��°�t1 *u&
�

= =�°�t� − 3°��� °�t�ý�& + �°��� − 3°��°�t� �ýþ&> æÎWü& + °�� (�2 + 2°��°�t( + 3°��°�t� − °���  

a.24 

 

APPENDIX A6 : 

 

Rigid body motion modes: 

 

Transversal modes 1st warping mode 2nd warping mode 3rd warping mode 
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Transversal modes 1st warping mode 2nd warping mode 3rd warping mode 

 
  

 

 
 

  

  
 

 

 

Higher transversal modes: 

Transversal mode 
Corresponding 1st 

warping mode 
Transversal mode 

Corresponding 1st 

warping mode 
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APPENDIX A7: 

For the box girder section, we consider ten transversal modes, with one warping mode associated 

to each one of them. We give the numerical values of the matrices introduced in page 12. The 

authors are also disposed to provide to the interested reader, more numerical values for different 

cross section form and for any number of distortion modes with their associated warping modes. 

§ = 	105	/
7
7
729750 29750 19090 »3070 5170 10410 9090 5650» 6600 49307

7
7
		,			« = �	105	�2/ + ��J

_̂__̀
___
a 0003.430−0.273.21−73.75−2.103.75 f_

__g
___
h
 

 
 
 
 
 ¯ = 105	/ 
 
 
 
 
 
 
 
 
 ® = 105	� 
 
 
 
 
 
 
 
 
 
 
 � = 105	�2/ + �� 
 
 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 5.70 0.05 0.04 -0.06 0.11 -0.05 -0.05 

0 0 0 0.05 16.49 0.22 -0.05 0.08 -0.25 -0.09 

0 0 0 0.04 0.22 64.68 -0.11 0.16 -0.43 -0.38 

0 0 0 -0.06 -0.05 -0.11 227.39 -0.68 0.41 0.47 

0 0 0 0.11 0.08 0.16 -0.68 320.32 -1.45 -1.56 

0 0 0 -0.05 -0.25 -0.43 0.41 -1.45 432.29 3.93 

0 0 0 -0.05 -0.09 -0.38 0.47 -1.56 3.93 529.50 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 12.13 0.10 0.09 -0.10 0.11 -0.10 -0.11 

0 0 0 0.10 35.13 0.25 -0.11 0.19 -0.37 -0.19 

0 0 0 0.09 0.25 138.22 -0.24 0.32 -0.54 -0.79 

0 0 0 -0.10 -0.11 -0.24 484.53 -0.99 0.89 0.99 

0 0 0 0.11 0.19 0.32 -0.99 685.20 -3.01 -3.28 

0 0 0 -0.10 -0.37 -0.54 0.89 -3.01 924.40 5.97 

0 0 0 -0.11 -0.19 -0.79 0.99 -3.28 5.97 1133.80 

14109.70 0 0 0 0 0 0 0 0 0 

0 4982.74 0 0 0 0 0 0 0 0 

0 0 228.73 -1.18 -204.43 231.24 -0.04 0.89 -43.12 52.20 

0 0 -1.18 0.85 1.28 -1.84 0.06 0.14 0.21 -0.41 

0 0 -204.43 1.28 237.41 -362.59 -0.05 -0.53 34.59 -80.86 

0 0 231.24 -1.84 -362.59 701.44 0.23 0.06 -30.16 154.81 

0 0 -0.04 0.06 -0.05 0.23 2.12 0.07 0.02 0.05 

0 0 0.89 0.14 -0.53 0.06 0.07 1.37 -0.20 0.03 

0 0 -43.12 0.21 34.59 -30.16 0.02 -0.20 10.44 -7.12 

0 0 52.20 -0.41 -80.86 154.81 0.05 0.03 -7.12 35.50 
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ª = 105	/ 
 

 

 
 
 
 ¬ = 105	/ 
 

 

 

 = 105	/ 
 

 
 

 

 

 

 

 

 

29750.00 0 -1186.52 9.85 2136.78 -6082.40 -8.81 132.19 -6168.80 3112.52 

0 29750.00 -0.63 -4725.72 56.02 16.07 -1543.38 -4272.53 -151.85 -139.75 

-1186.52 -0.63 13997.50 17.58 2227.67 2076.11 4.42 -37.87 1495.99 209.45 

9.85 -4725.72 17.58 3811.80 -16.23 -10.50 248.05 664.51 17.18 22.32 

2136.78 56.02 2227.67 -16.23 4263.84 -1285.47 -5.28 15.71 -990.77 96.36 

-6082.40 16.07 2076.11 -10.50 -1285.47 10945.70 -1.36 -16.49 832.41 -732.00 

-8.81 -1543.38 4.42 248.05 -5.28 -1.36 9083.50 238.16 9.36 5.56 

132.19 -4272.53 -37.87 664.51 15.71 -16.49 238.16 6166.33 2.10 37.52 

-6168.80 -151.85 1495.99 17.18 -990.77 832.41 9.36 2.10 7455.76 -753.63 

3112.52 -139.75 209.45 22.32 96.36 -732.00 5.56 37.52 -753.63 5127.14 

0.00 29750.00 0 0 0 0 0 0 0 0 

-29750.00 0 0 0 0 0 0 0 0 0 

0.63 -1186.52 13950.30 17.67 2313.21 1834.02 4.38 -33.31 1249.04 333.72 

4725.72 9.85 17.83 3060.96 -8.11 -6.03 2.97 -14.11 -4.71 -0.70 

-56.02 2136.78 2312.94 -7.90 4110.37 -848.01 -2.01 14.77 -548.58 -128.97 

-16.07 -6082.40 1833.55 -6.37 -848.81 9700.45 -1.56 11.41 -427.51 -94.34 

1543.38 -8.81 4.06 2.68 -1.69 -2.26 9002.08 16.18 -0.47 -0.90 

4272.53 132.19 -32.73 -14.41 14.21 12.77 16.88 5550.64 7.83 3.80 

151.85 -6168.80 1249.90 -4.69 -547.69 -429.27 -0.69 8.31 6176.07 -107.71 

139.75 3112.52 333.54 -1.05 -126.75 -95.57 -0.51 3.19 -109.54 4799.30 

0 0 0 -0.06 -10.67 0.85 -0.12 1.07 -24.94 -85.70 

0 0 0 5.20 -0.05 -0.05 -17.64 -29.83 -0.53 -1.68 

0 0 0 -0.02 -1.71 -3.49 0.06 -0.74 25.44 16.90 

0 0 0 -0.29 -0.01 -0.02 4.13 -6.25 -0.17 0.16 

0 0 0 0.00 -0.94 -1.99 -0.06 0.27 -9.77 4.16 

0 0 0 0.02 2.13 6.07 0.02 -0.59 24.04 1.99 

0 0 0 1.02 -0.02 -0.01 18.41 0.97 0.03 -0.01 

0 0 0 0.28 0.01 0.01 0.65 13.51 -0.01 0.15 

0 0 0 0 -0.39 -0.28 0.03 -0.01 17.33 -3.08 

0 0 0 -0.03 -1.06 -0.98 0.05 -0.11 3.46 15.21 
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Figure 1: examples of transversal deformation modes for a thin walled profile I-section with 1D elements. 

 

Figure 2: examples of transversal deformation modes for a rectangular section with triangular elements. 

 

 
Figure 3 : A view of the shell model of the beam andits cross section. 

 

 

 

 

 
Figure 4: beam cross section with the centred applied load. 
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Figure 5 : Comparison of the normal stresses between the shell and the beam model, at x= 0.05m and at mid-
depth of the upper slab (Ty = -1 MN) 

 

Figure 6 : Comparison of the shear stress xz between the shell and the beam models, at x= 0.95m and at mid-
depth of the upper slab (Ty = -1 MN) 
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Figure 7 : Comparison of the displacement between the shell and the beam models, at x= 10m and at mid-

depth of the upper slab (Ty = -1 MN) 
 
 

Figure 8 : Comparison of the vertical displacement along the beam length between the shell and the beam models. 
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Figure 9 : representation of the generalized coordinates associated with the higher transversal modes(4-20) along 
the beam’s length, for the beam model C in Fig.7. 

Figure 10 : Comparison of the results obtained from the shell model with different mesh size. 
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Figure 11: beam cross section with the excentred applied load. 

 

Figure 12 : Comparison of the displacement between the shell and the beam models, at x= 10m and at mid-depth 
of the upper slab (Ty = -1 MN) 
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Figure 13 : representation of the generalized coordinates associated to the higher transversal modes(4-10) along 
the beam’s length, for the beam model B in Fig.12. 

 

 
 
 
 
 

Figure 14 : Comparison of the normal stresses between the shell and the beam model, at x= 0.05m and at mid-
depth of the upper slab (Ty = -1 MN) 
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Figure 15 : Comparison of the shear stress xz between the shell and the beam models, at x= 0.95m and at mid-
depth of the upper slab (Ty = -1 MN) 

 

 

Figure 16: A view of the beam cross section. 

 

Figure 17: A view of the brick model of the beam. 
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Figure 18: Comparison of the displacement between the brick, shell and the beam models, at x= 6m and at mid-
depth of the upper slab (Ty = -10 MN) 

 
 

 

Figure 19 : Comparison of the normal stresses between the brick, shell and beam model, at x= 0.05m and at mid-
depth of the upper slab (Ty = -10 MN) 
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Figure 20 : Comparison of the shear stress xz between the brick shell and beam models, at x= 0.95m and at mid-

depth of the upper slab (Ty = -10 MN) 
 

 

Figure 21 : representation of the generalized coordinates associated to the higher transversal modes(4-10) along 
the beam’s length, for the beam model C in Fig.18. 
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